Deepen AI - Enterprise
Deepen AI
  • Deepen AI Overview
  • FAQ
  • Saas & On Premise
  • Data Management
    • Data Management Overview
    • Creating/Uploading a dataset
    • Create a dataset profile
    • Auto Task Assignments
    • Task Life Cycle
    • Tasks Assignments
    • Creating a group
    • Adding a user
    • Embed labeled dataset
    • Export
    • Export labels
    • Import Labels
    • Import profile
    • Import profile via JSON
    • Access token for APIs
    • Data Streaming
    • Reports
    • Assessments
  • 2D/3D editors
    • Editor Content
    • AI sense (ML-assisted labeling)
    • Assisted 2d Segmentation
    • Scene Labeling
  • 2D Editor
    • 2D Editor Overview
    • 2D Bounding Boxes
    • 2D Polyline/Line
    • 2D Polygon
      • 2D Semantic/Instance Segmentation
        • 2D Segmentation (foreground/background)
    • 2D Points
    • 2D Semantic Painting
      • Segment Anything
      • Propagate Labels in Semantic Segementation
      • 2D Semantic Painting/Segmentation Output Format
    • 3D Bounding boxes on images
    • 2D ML-powered Visual Object Tracking
    • 2D Shortcut Keys
    • 2D Customer Review
  • 3D Editor
    • 3D Editor Overview
    • 3D Bounding Boxes — Single Frame/Individual Frame
    • 3D Bounding Boxes_Sequence
    • 3D Bounding Boxes Features
      • Label View
      • One-Click Bounding Box
      • Sequence Timeline
      • Show Ground Mesh
      • Secondary Views
      • Camera Views
      • Hide/UnHide Points in 3D Lidar
    • 3D Lines
    • 3D Polygons
    • 3D Semantic Segmentation/Painting
    • 3D Instance Segmentation/Painting
    • Fused Cloud
    • 3D Segmentation (Smart Brush)
    • 3D Segmentation (Polygon)
    • 3D Segmentation (Brush)
    • 3D Segmentation (Ground Polygon)
    • 3D Painting (Foreground/Background)
    • 3D Segmentation(3D Brush/Cube)
    • Label Set
    • 3D Shortcut Keys
    • 3D Customer Review
  • 3D input/output
    • JSON input format for uploading a dataset in a point cloud project.
    • How to convert ROS bag into JSON data for annotation
    • Data Output Format - 3D Semantic Segmentation
    • Data Output Format - 3D Instance Segmentation
  • Quality Assurance
    • Issue Creation
    • Automatic QA
  • Calibration
    • Calibration
    • Charuco Dictionary
    • Calibration FAQ
    • Data Collection for Camera intrinsic Calibration
    • Camera Intrinsic calibration
    • Data Collection for Lidar-Camera Calibration (Single Target)
    • Lidar-Camera Calibration (Single target)
    • Data Collection for Lidar-Camera Calibration (Targetless)
    • Lidar-Camera Calibration (Targetless)
    • Data Collection for Multi Target Lidar-Camera Calibration
    • Multi Target Lidar-Camera Calibration
    • Lidar-Camera Calibration(Old)
    • Vehicle-Camera Calibration
      • Data Collection for Vehicle-Camera Calibration
      • Vehicle Camera Targetless Calibration
      • Data collection for lane based targetless vehicle-camera calibration
      • Lane based Targetless Vehicle Camera Calibration
    • Data Collection for Rough Terrain Vehicle-Camera Calibration
    • Rough Terrain Vehicle-Camera Calibration
    • Calibration Toolbar options
    • Calibration Profile
    • Data Collection for Overlapping-Camera Calibration
    • Overlapping-Camera Calibration
    • Data collection guide for Overlapping Camera Calibration (Multiple-Targets)
    • Overlapping Camera Calibration (Multiple-Targets)
    • Data Collection for Vehicle-3D Lidar calibration
    • Data Collection for Vehicle-2D Lidar calibration
    • Vehicle Lidar (3D and 2D) Calibration
    • Data Collection for Vehicle Lidar Targetless Calibration
    • Data Collection for IMU Lidar Targetless Calibration
    • Vehicle Lidar Targetless Calibration
    • Data Collection for Non Overlapping Camera Calibration
    • Non-Overlapping-Camera Calibration
    • Multi Sensor Visualization
    • Data Collection for LiDAR-LiDAR Calibration
    • LiDAR-LiDAR Calibration
    • Data Collection for IMU Intrinsic calibration
    • IMU Intrinsic Calibration
    • Data Collection for Radar-Camera Calibration
    • Radar-Camera Calibration
    • Data Collection for IMU Vehicle calibration
    • Lidar-IMU Calibration
    • IMU Vehicle Calibration
    • Data Collection for vehicle radar calibration
    • Vehicle radar calibration
    • Calibration Optimiser
    • Calibration list page
    • Data collection for rough terrain vehicle-Lidar calibration
    • Rough terrain vehicle Lidar calibration
    • Surround view camera correction calibration
    • Data Collection for Surround view camera correction calibration
    • Data Collection for Lidar-Radar calibration
    • Lidar Radar Calibration
    • Vehicle Lidar Calibration
    • API Documentation
      • Targetless Overlapping Camera Calibration API
      • Target Overlapping Camera Calibration API
      • Lidar Camera Calibration API
      • LiDAR-LiDAR Calibration API
      • Vehicle Lidar Calibration API
      • Global Optimiser
      • Radar Camera Calibration API
      • Target Camera-Vehicle Calibration API
      • Targetless Camera-Vehicle Calibration API
      • Calibration groups
      • Delete Calibrations
      • Access token for APIs
    • Target Generator
  • API Reference
    • Introduction and Quickstart
    • Datasets
      • Create new dataset
      • Delete dataset
    • Issues
    • Tasks
    • Process uploaded data
    • Import 2D labels for a dataset
    • Import 3D labels for a dataset
    • Download labels
    • Labeling profiles
    • Paint labels
    • User groups
    • User / User Group Scopes
    • Download datasets
    • Label sets
    • Resources
    • 2D box pre-labeling model API
    • 3D box pre-labeling model API
    • Output JSON format
Powered by GitBook
On this page
  • Target-based
  • Calibration target
  • Data Collection
  • Targetless
Export as PDF
  1. Calibration

Data Collection for Overlapping-Camera Calibration

PreviousCalibration ProfileNextOverlapping-Camera Calibration

Last updated 7 months ago

Target-based

Calibration target

The Checkerboard is the calibration target. You can use the attached PDF. It has seven internal corners horizontally and nine internal corners vertically.

Data Collection

Place the target in the overlapping field of view of the cameras and take an image from both cameras. Then, move the target all across the overlapping field of view of the cameras and take images from both cameras. For good extrinsic parameters, a minimum of 25 pairs of images is recommended.

Here is an example set of files used during this calibration process.

Calculating the intrinsic parameters for the left and right cameras is also recommended. Although the tool supports on-the-fly intrinsics calculations, we use the uploaded images for the intrinsic parameters, which tends to raise inaccuracies in the intrinsics calibration and overall Overlapping Calibration results.

Targetless

It is recommended that the scene have sufficient objects, textures, and unique patterns for feature detectors to identify and match. For example, the above calibration target example is not an ideal dataset for targetless as it has just a checkerboard in front of a plain white wall.

Here is an example set of files used during this calibration process.

https://drive.google.com/file/d/1mTR8HTpvROE1Pv0rmXEBVLSxs_yMDnvf/view?usp=sharing