Deepen AI - Enterprise
Deepen AI
  • Deepen AI Overview
  • FAQ
  • Saas & On Premise
  • Data Management
    • Data Management Overview
    • Creating/Uploading a dataset
    • Create a dataset profile
    • Auto Task Assignments
    • Task Life Cycle
    • Tasks Assignments
    • Creating a group
    • Adding a user
    • Embed labeled dataset
    • Export
    • Export labels
    • Import Labels
    • Import profile
    • Import profile via JSON
    • Access token for APIs
    • Data Streaming
    • Reports
    • Assessments
  • 2D/3D editors
    • Editor Content
    • AI sense (ML-assisted labeling)
    • Assisted 2d Segmentation
    • Scene Labeling
  • 2D Editor
    • 2D Editor Overview
    • 2D Bounding Boxes
    • 2D Polyline/Line
    • 2D Polygon
      • 2D Semantic/Instance Segmentation
        • 2D Segmentation (foreground/background)
    • 2D Points
    • 2D Semantic Painting
      • Segment Anything
      • Propagate Labels in Semantic Segementation
      • 2D Semantic Painting/Segmentation Output Format
    • 3D Bounding boxes on images
    • 2D ML-powered Visual Object Tracking
    • 2D Shortcut Keys
    • 2D Customer Review
  • 3D Editor
    • 3D Editor Overview
    • 3D Bounding Boxes — Single Frame/Individual Frame
    • 3D Bounding Boxes_Sequence
    • 3D Bounding Boxes Features
      • Label View
      • One-Click Bounding Box
      • Sequence Timeline
      • Show Ground Mesh
      • Secondary Views
      • Camera Views
      • Hide/UnHide Points in 3D Lidar
    • 3D Lines
    • 3D Polygons
    • 3D Semantic Segmentation/Painting
    • 3D Instance Segmentation/Painting
    • Fused Cloud
    • 3D Segmentation (Smart Brush)
    • 3D Segmentation (Polygon)
    • 3D Segmentation (Brush)
    • 3D Segmentation (Ground Polygon)
    • 3D Painting (Foreground/Background)
    • 3D Segmentation(3D Brush/Cube)
    • Label Set
    • 3D Shortcut Keys
    • 3D Customer Review
  • 3D input/output
    • JSON input format for uploading a dataset in a point cloud project.
    • How to convert ROS bag into JSON data for annotation
    • Data Output Format - 3D Semantic Segmentation
    • Data Output Format - 3D Instance Segmentation
  • Quality Assurance
    • Issue Creation
    • Automatic QA
  • Calibration
    • Calibration
    • Charuco Dictionary
    • Calibration FAQ
    • Data Collection for Camera intrinsic Calibration
    • Camera Intrinsic calibration
    • Data Collection for Lidar-Camera Calibration (Single Target)
    • Lidar-Camera Calibration (Single target)
    • Data Collection for Lidar-Camera Calibration (Targetless)
    • Lidar-Camera Calibration (Targetless)
    • Data Collection for Multi Target Lidar-Camera Calibration
    • Multi Target Lidar-Camera Calibration
    • Lidar-Camera Calibration(Old)
    • Vehicle-Camera Calibration
      • Data Collection for Vehicle-Camera Calibration
      • Vehicle Camera Targetless Calibration
      • Data collection for lane based targetless vehicle-camera calibration
      • Lane based Targetless Vehicle Camera Calibration
    • Data Collection for Rough Terrain Vehicle-Camera Calibration
    • Rough Terrain Vehicle-Camera Calibration
    • Calibration Toolbar options
    • Calibration Profile
    • Data Collection for Overlapping-Camera Calibration
    • Overlapping-Camera Calibration
    • Data collection guide for Overlapping Camera Calibration (Multiple-Targets)
    • Overlapping Camera Calibration (Multiple-Targets)
    • Data Collection for Vehicle-3D Lidar calibration
    • Data Collection for Vehicle-2D Lidar calibration
    • Vehicle Lidar (3D and 2D) Calibration
    • Data Collection for Vehicle Lidar Targetless Calibration
    • Data Collection for IMU Lidar Targetless Calibration
    • Vehicle Lidar Targetless Calibration
    • Data Collection for Non Overlapping Camera Calibration
    • Non-Overlapping-Camera Calibration
    • Multi Sensor Visualization
    • Data Collection for LiDAR-LiDAR Calibration
    • LiDAR-LiDAR Calibration
    • Data Collection for IMU Intrinsic calibration
    • IMU Intrinsic Calibration
    • Data Collection for Radar-Camera Calibration
    • Radar-Camera Calibration
    • Data Collection for IMU Vehicle calibration
    • Lidar-IMU Calibration
    • IMU Vehicle Calibration
    • Data Collection for vehicle radar calibration
    • Vehicle radar calibration
    • Calibration Optimiser
    • Calibration list page
    • Data collection for rough terrain vehicle-Lidar calibration
    • Rough terrain vehicle Lidar calibration
    • Surround view camera correction calibration
    • Data Collection for Surround view camera correction calibration
    • Data Collection for Lidar-Radar calibration
    • Lidar Radar Calibration
    • Vehicle Lidar Calibration
    • API Documentation
      • Targetless Overlapping Camera Calibration API
      • Target Overlapping Camera Calibration API
      • Lidar Camera Calibration API
      • LiDAR-LiDAR Calibration API
      • Vehicle Lidar Calibration API
      • Global Optimiser
      • Radar Camera Calibration API
      • Target Camera-Vehicle Calibration API
      • Targetless Camera-Vehicle Calibration API
      • Calibration groups
      • Delete Calibrations
      • Access token for APIs
    • Target Generator
  • API Reference
    • Introduction and Quickstart
    • Datasets
      • Create new dataset
      • Delete dataset
    • Issues
    • Tasks
    • Process uploaded data
    • Import 2D labels for a dataset
    • Import 3D labels for a dataset
    • Download labels
    • Labeling profiles
    • Paint labels
    • User groups
    • User / User Group Scopes
    • Download datasets
    • Label sets
    • Resources
    • 2D box pre-labeling model API
    • 3D box pre-labeling model API
    • Output JSON format
Powered by GitBook
On this page
  • Folder Structure
  • Note
  • config.json for targetless camera vehicle
  • Sample config.json
  • config.json key description
  • Quickstart
  • Upload file and calibrate
  • Request
  • Response
  • Get Extrinsic Parameters
  • Request
  • Response
Export as PDF
  1. Calibration
  2. API Documentation

Targetless Camera-Vehicle Calibration API

PreviousTarget Camera-Vehicle Calibration APINextCalibration groups

Last updated 3 months ago

Introduction

The API requires the client to upload the images and configuration for camera setup in a zip file (.zip extension) in the format defined below. The contents of the zip file are called a dataset.

  1. The client makes an Upload and calibrate API call, which uploads their files and runs the calibration algorithm on the images for the given configuration.

  2. The calibration process is completed without errors if the Upload and calibrate API call response contains dataset_id, calibration_algorithm_version and extrinsic_parameters.

  3. The client can call the Get Extrinsic Parameters API using the dataset_id obtained from the Upload and calibrate API. This API responds with dataset_id, extrinsic_parameters, calibration_algorithm_version, extrinsic_parameters, and error_stats.

Folder Structure

We require images from the camera and other configurations to calculate extrinsic parameters.

  1. Place the images captured from the camera in a folder.

  2. config.json contains configuration details of the calibration (intrinsic parameters, calibration name, etc.)

Note: Folder structure is optional. Users can place all files in the main directory and zip it.

Note

  1. The names of the folders and the images shown here are for demonstration purposes. Users should avoid using space in the folder and image filenames.

  2. The name of the JSON file should be config.json (case sensitive)

config.json for targetless camera vehicle

{
    "calibration_name": "sample targetless vehicle calibration",
    "calibration_type": "camera_vehicle_calibration",
    "calibration_group_id": "XXXXXXXXXXXXXXXXX",
    "is_target_based": false,
    "intrinsics":
    {
        "camera_name": "Front",
        "camera_fov_direction": "front",
        "fx": 924.8888151455135,
        "fy": 927.1330690835912,
        "cx": 950.9444853761762,
        "cy": 574.8548162684357,
        "lens_model": "pinhole",
        "k1": -0.37373087093017543,
        "k2": 0.2006217414922034,
        "k3": -0.06745835388849057,
        "k4": 0,
        "k5": 0,
        "k6": 0,
        "p1": -0.0014548541893372843,
        "p2": -0.00044277672802422454,
        "distortion_enabled": true
    },
    "target_configuration":
    {
        "file_data":
        [
            {
                "file_name": "out1.png"
            },
            {
                "file_name": "out5.png"
            },
            {
                "file_name": "out10.png"
            },
            {
                "file_name": "out15.png"
            },
            {
            	"file_name": "out20.png"
            }
        ]
    }
}

Sample config.json

config.json key description

Key
Type
Description

calibration_name

String

Name of the calibration

calibration_type

String

Non-editable field. Value should be camera_vehicle_calibration

calibration_group_id

String

This is an optional key. Provide valid calibration_group_id to add the dataset to calibration group.

intrinsics

Object

Intrinsic parameters of the camera used for data collection.

camera_name

string

It is the name given by the client to the camera. The client can modify it as willed.

lens_model

string

Describes the type of lens used by the camera. Accepted values

  1. pinhole

  2. fisheye

  3. kannalabrandt

fx

double

Focal length of the cameras in the X-axis. Value in pixels.

fy

double

Focal length of the camera in the Y-axis. Value in pixels.

cx

double

Optical centre of the camera in the X-axis. Value in pixels.

cy

double

Optical centre of the camera in the Y-axis. Value in pixels.

distortion_enabled

boolean

Makes use of distortion coefficients (k1, k2, k3, k4, p1, p2) for the calibration algorithm when set true. Distortion coefficients (k1, k2, k3, k4, p1, p2) are not required if it is false.

k1, k2, k3, k4, k5, k6, k7, k8,p1, p2

double

These are the values for distortion coefficients of the camera lens.Note:

  1. If the lens_model is pinhole we require k1, k2, k3, p1, and p2 values (no need of k4-k8)

  2. If the lens_model is fisheye then we require the k1, k2, k3, and k4 values. (k5-k8,p1 and p2 are not needed)

  3. if the lens_model is kannalbrandt we require k1-k8. ( p1 and p2 values are not needed)

  4. These parameters are not required if distortion_enabled is false.

file_data

List of Objects

It is a list of Objects, where each Object is a image and it's corresponding configuration.

  1. file_name: The name of the file (including the path in zip file).

target_configuration

Object

wrapper around file_data . for consistency with targetbased.

Quickstart

Upload file and calibrate

This POST api call sends a zip file to the server and runs the calibration algorithm. Returns dataset_id, extrinsic_camera_coordinate_system, calibration_algorithm_version, extrinsic_parameters, and error_stats to the user as the response.

https://tools.calibrate.deepen.ai/api/v2/external/clients/{clientId}/calibration_dataset

Request

Path parameters

Parameter name
Parameter type
Description

clientId

string

ClientId obtained from Deepen AI

Body

Key
Value
Description

file

.zip file

Zip file containing config and images in a suitable format

Response

{
    "dataset_id": "XXXXXXXXXXXXXX",
    "calibration_algorithm_version": "XXXXXXXXXXXXXXXXXXX",
    "extrinsic_parameters": {
        "roll": -3.532592830669066,
        "pitch": 2.631748940982094,
        "yaw": 0.9289737684506295
    }
}
Key
Description

dataset_id

A unique value to identify the dataset. dataset_id can be used to retrieve the extrinsic parameters.

calibration_algorithm_version

The version of the algorithm used to calculate extrinsic parameters. This value can be used to map extrinsic parameters to a specific algorithm version.

extrinsic_parameters

roll, pitch, and yaw are given in degrees.

Get Extrinsic Parameters

This GET api call returns dataset_id, extrinsic_camera_coordinate_system, calibration_algorithm_version, extrinsic_parameters, and error_stats to the user as the response.

https://tools.calibrate.deepen.ai/api/v2/external/datasets/{dataset_id}/extrinsic_parameters

Request

Path parameters

Parameter name
Parameter type
Description

dataset_id

string

dataset_id obtained from the response of Upload file and calibrate API.

Response

{
    "dataset_id": "XXXXXXXXXXXXXXXXX",
    "extrinsic_parameters": {
        "roll": -96.93828475587402,
        "pitch": -2.589261966902198,
        "yaw": -91.64337716058188,
    },
    "calibration_algorithm_version": "XXXXXXXXXXXXXXXXXX"
}
Key
Description

dataset_id

A unique value to identify the dataset. dataset_id can be used to retrieve the extrinsic parameters.

calibration_algorithm_version

The version of the algorithm used to calculate extrinsic parameters. This value can be used to map extrinsic parameters to a specific algorithm version.

extrinsic_parameters

roll, pitch, and yaw are given in degrees.

Before invoking the APIs, the client must obtain the clientId and auth token from Deepen AI. If you are a calibration admin, you can create different Access Tokens using the UI and use those instead. clientId is part of the path parameters in most API calls, and the auth token should be prefixed with “Bearer“ and passed to the ‘Authorization’ header in all API requests. How to get Access Tokens can be found on the following link:

Access token for APIs
1KB
config.json
All files in main directory