Deepen AI - Enterprise
Deepen AI
  • Deepen AI Overview
  • FAQ
  • Saas & On Premise
  • Data Management
    • Data Management Overview
    • Creating/Uploading a dataset
    • Create a dataset profile
    • Auto Task Assignments
    • Task Life Cycle
    • Tasks Assignments
    • Creating a group
    • Adding a user
    • Embed labeled dataset
    • Export
    • Export labels
    • Import Labels
    • Import profile
    • Import profile via JSON
    • Access token for APIs
    • Data Streaming
    • Reports
    • Assessments
  • 2D/3D editors
    • Editor Content
    • AI sense (ML-assisted labeling)
    • Assisted 2d Segmentation
    • Scene Labeling
  • 2D Editor
    • 2D Editor Overview
    • 2D Bounding Boxes
    • 2D Polyline/Line
    • 2D Polygon
      • 2D Semantic/Instance Segmentation
        • 2D Segmentation (foreground/background)
    • 2D Points
    • 2D Semantic Painting
      • Segment Anything
      • Propagate Labels in Semantic Segementation
      • 2D Semantic Painting/Segmentation Output Format
    • 3D Bounding boxes on images
    • 2D ML-powered Visual Object Tracking
    • 2D Shortcut Keys
    • 2D Customer Review
  • 3D Editor
    • 3D Editor Overview
    • 3D Bounding Boxes — Single Frame/Individual Frame
    • 3D Bounding Boxes_Sequence
    • 3D Bounding Boxes Features
      • Label View
      • One-Click Bounding Box
      • Sequence Timeline
      • Show Ground Mesh
      • Secondary Views
      • Camera Views
      • Hide/UnHide Points in 3D Lidar
    • 3D Lines
    • 3D Polygons
    • 3D Semantic Segmentation/Painting
    • 3D Instance Segmentation/Painting
    • Fused Cloud
    • 3D Segmentation (Smart Brush)
    • 3D Segmentation (Polygon)
    • 3D Segmentation (Brush)
    • 3D Segmentation (Ground Polygon)
    • 3D Painting (Foreground/Background)
    • 3D Segmentation(3D Brush/Cube)
    • Label Set
    • 3D Shortcut Keys
    • 3D Customer Review
  • 3D input/output
    • JSON input format for uploading a dataset in a point cloud project.
    • How to convert ROS bag into JSON data for annotation
    • Data Output Format - 3D Semantic Segmentation
    • Data Output Format - 3D Instance Segmentation
  • Quality Assurance
    • Issue Creation
    • Automatic QA
  • Calibration
    • Calibration
    • Charuco Dictionary
    • Calibration FAQ
    • Data Collection for Camera intrinsic Calibration
    • Camera Intrinsic calibration
    • Data Collection for Lidar-Camera Calibration (Single Target)
    • Lidar-Camera Calibration (Single target)
    • Data Collection for Lidar-Camera Calibration (Targetless)
    • Lidar-Camera Calibration (Targetless)
    • Data Collection for Multi Target Lidar-Camera Calibration
    • Multi Target Lidar-Camera Calibration
    • Lidar-Camera Calibration(Old)
    • Vehicle-Camera Calibration
      • Data Collection for Vehicle-Camera Calibration
      • Vehicle Camera Targetless Calibration
      • Data collection for lane based targetless vehicle-camera calibration
      • Lane based Targetless Vehicle Camera Calibration
    • Data Collection for Rough Terrain Vehicle-Camera Calibration
    • Rough Terrain Vehicle-Camera Calibration
    • Calibration Toolbar options
    • Calibration Profile
    • Data Collection for Overlapping-Camera Calibration
    • Overlapping-Camera Calibration
    • Data collection guide for Overlapping Camera Calibration (Multiple-Targets)
    • Overlapping Camera Calibration (Multiple-Targets)
    • Data Collection for Vehicle-3D Lidar calibration
    • Data Collection for Vehicle-2D Lidar calibration
    • Vehicle Lidar (3D and 2D) Calibration
    • Data Collection for Vehicle Lidar Targetless Calibration
    • Data Collection for IMU Lidar Targetless Calibration
    • Vehicle Lidar Targetless Calibration
    • Data Collection for Non Overlapping Camera Calibration
    • Non-Overlapping-Camera Calibration
    • Multi Sensor Visualization
    • Data Collection for LiDAR-LiDAR Calibration
    • LiDAR-LiDAR Calibration
    • Data Collection for IMU Intrinsic calibration
    • IMU Intrinsic Calibration
    • Data Collection for Radar-Camera Calibration
    • Radar-Camera Calibration
    • Data Collection for IMU Vehicle calibration
    • Lidar-IMU Calibration
    • IMU Vehicle Calibration
    • Data Collection for vehicle radar calibration
    • Vehicle radar calibration
    • Calibration Optimiser
    • Calibration list page
    • Data collection for rough terrain vehicle-Lidar calibration
    • Rough terrain vehicle Lidar calibration
    • Surround view camera correction calibration
    • Data Collection for Surround view camera correction calibration
    • Data Collection for Lidar-Radar calibration
    • Lidar Radar Calibration
    • Vehicle Lidar Calibration
    • API Documentation
      • Targetless Overlapping Camera Calibration API
      • Target Overlapping Camera Calibration API
      • Lidar Camera Calibration API
      • LiDAR-LiDAR Calibration API
      • Vehicle Lidar Calibration API
      • Global Optimiser
      • Radar Camera Calibration API
      • Target Camera-Vehicle Calibration API
      • Targetless Camera-Vehicle Calibration API
      • Calibration groups
      • Delete Calibrations
      • Access token for APIs
    • Target Generator
  • API Reference
    • Introduction and Quickstart
    • Datasets
      • Create new dataset
      • Delete dataset
    • Issues
    • Tasks
    • Process uploaded data
    • Import 2D labels for a dataset
    • Import 3D labels for a dataset
    • Download labels
    • Labeling profiles
    • Paint labels
    • User groups
    • User / User Group Scopes
    • Download datasets
    • Label sets
    • Resources
    • 2D box pre-labeling model API
    • 3D box pre-labeling model API
    • Output JSON format
Powered by GitBook
On this page
Export as PDF
  1. API Reference

Download labels

PreviousImport 3D labels for a datasetNextLabeling profiles

Last updated 1 year ago

Download labels

Download all labels

URL

GET

Request

Path parameters

Parameter name
Parameter type
Description

datasetId

string

Dataset Id of the dataset

Response

Returns a json with the field ‘all_labels’ that represents an array of all the labels in the dataset.

Example

{
    "all_labels": [
        {
            "file_id": "20190412_092019_002Img1_338613.pcd",
            "label_category_id": "car",
            "label_id": "car: 4",
            "label_type": "3d_bbox",
            "stage_id": "QA",
            "create_time_millis": 1589965718592,
            "label_set_id": "default",
            "labeller_email": "vishal@deepen.ai",
            "sensor_id": "lidar",
            "three_d_bbox": {
                "cx": 4.664568330379911,
                "cy": 6.061948311705668,
                "cz": 1.0518338639631983,
                "h": 2.25,
                "l": 2.25,
                "w": 2.25,
                "rot_z": 0
            },
            "update_time_millis": 1589965718592,
            "version": 1
        }
    ]
}

Download labels by filename

URL

Request

Path parameters

Parameter name
Parameter type
Description

datasetId

string

Dataset Id of the dataset

Response

Returns a json with the field ‘labels’ that represents a dictionary of labels and files.

Example

{
    "labels": {
        "20190412_092019_002Img1_338613.pcd": [
            {
                "file_id": "20190412_092019_002Img1_338613.pcd",
                "label_category_id": "car",
                "label_id": "car:4",
                "label_type": "3d_bbox",
                "stage_id": "QA",
                "create_time_millis": 1589965718592,
                "label_set_id": "default",
                "labeller_email": "vishal@deepen.ai",
                "sensor_id": "lidar",
                "three_d_bbox": {
                    "cx": 4.664568330379911,
                    "cy": 6.061948311705668,
                    "cz": 1.0518338639631983,
                    "h": 2.25,
                    "l": 2.25,
                    "w": 2.25,
                    "rot_z": 0
                },
                "update_time_millis": 1589965718592,
                "version": 1
            }
        ],
        "20190412_092019_002Img1_338663.pcd": [],
        "20190412_092019_002Img1_338713.pcd": [],
        "20190412_092019_002Img1_338763.pcd": [],
        "20190412_092019_002Img1_338813.pcd": [],
        "20190412_092019_002Img1_338863.pcd": [],
        "20190412_092019_002Img1_338913.pcd": [],
        "20190412_092019_002Img1_338963.pcd": [],
        "20190412_092019_002Img1_339013.pcd": [],
        "20190412_092019_002Img1_339062.pcd": []
    }
}

Note: Labels can only be downloaded after the completion of labelling.

GET

https://tools.deepen.ai/api/v2/datasets/{datasetId}/labels?filter_existing_categories=true&final=true
https://tools.deepen.ai/api/v2/datasets/{datasetId}/labels?labels_with_file_ids_order=true&final=true