Deepen AI - Enterprise
Deepen AI
  • Deepen AI Overview
  • FAQ
  • Saas & On Premise
  • Data Management
    • Data Management Overview
    • Creating/Uploading a dataset
    • Create a dataset profile
    • Auto Task Assignments
    • Task Life Cycle
    • Tasks Assignments
    • Creating a group
    • Adding a user
    • Embed labeled dataset
    • Export
    • Export labels
    • Import Labels
    • Import profile
    • Import profile via JSON
    • Access token for APIs
    • Data Streaming
    • Reports
    • Assessments
  • 2D/3D editors
    • Editor Content
    • AI sense (ML-assisted labeling)
    • Assisted 2d Segmentation
    • Scene Labeling
  • 2D Editor
    • 2D Editor Overview
    • 2D Bounding Boxes
    • 2D Polyline/Line
    • 2D Polygon
      • 2D Semantic/Instance Segmentation
        • 2D Segmentation (foreground/background)
    • 2D Points
    • 2D Semantic Painting
      • Segment Anything
      • Propagate Labels in Semantic Segementation
      • 2D Semantic Painting/Segmentation Output Format
    • 3D Bounding boxes on images
    • 2D ML-powered Visual Object Tracking
    • 2D Shortcut Keys
    • 2D Customer Review
  • 3D Editor
    • 3D Editor Overview
    • 3D Bounding Boxes — Single Frame/Individual Frame
    • 3D Bounding Boxes_Sequence
    • 3D Bounding Boxes Features
      • Label View
      • One-Click Bounding Box
      • Sequence Timeline
      • Show Ground Mesh
      • Secondary Views
      • Camera Views
      • Hide/UnHide Points in 3D Lidar
    • 3D Lines
    • 3D Polygons
    • 3D Semantic Segmentation/Painting
    • 3D Instance Segmentation/Painting
    • Fused Cloud
    • 3D Segmentation (Smart Brush)
    • 3D Segmentation (Polygon)
    • 3D Segmentation (Brush)
    • 3D Segmentation (Ground Polygon)
    • 3D Painting (Foreground/Background)
    • 3D Segmentation(3D Brush/Cube)
    • Label Set
    • 3D Shortcut Keys
    • 3D Customer Review
  • 3D input/output
    • JSON input format for uploading a dataset in a point cloud project.
    • How to convert ROS bag into JSON data for annotation
    • Data Output Format - 3D Semantic Segmentation
    • Data Output Format - 3D Instance Segmentation
  • Quality Assurance
    • Issue Creation
    • Automatic QA
  • Calibration
    • Calibration
    • Charuco Dictionary
    • Calibration FAQ
    • Data Collection for Camera intrinsic Calibration
    • Camera Intrinsic calibration
    • Data Collection for Lidar-Camera Calibration (Single Target)
    • Lidar-Camera Calibration (Single target)
    • Data Collection for Lidar-Camera Calibration (Targetless)
    • Lidar-Camera Calibration (Targetless)
    • Data Collection for Multi Target Lidar-Camera Calibration
    • Multi Target Lidar-Camera Calibration
    • Lidar-Camera Calibration(Old)
    • Vehicle-Camera Calibration
      • Data Collection for Vehicle-Camera Calibration
      • Vehicle Camera Targetless Calibration
      • Data collection for lane based targetless vehicle-camera calibration
      • Lane based Targetless Vehicle Camera Calibration
    • Data Collection for Rough Terrain Vehicle-Camera Calibration
    • Rough Terrain Vehicle-Camera Calibration
    • Calibration Toolbar options
    • Calibration Profile
    • Data Collection for Overlapping-Camera Calibration
    • Overlapping-Camera Calibration
    • Data collection guide for Overlapping Camera Calibration (Multiple-Targets)
    • Overlapping Camera Calibration (Multiple-Targets)
    • Data Collection for Vehicle-3D Lidar calibration
    • Data Collection for Vehicle-2D Lidar calibration
    • Vehicle Lidar (3D and 2D) Calibration
    • Data Collection for Vehicle Lidar Targetless Calibration
    • Data Collection for IMU Lidar Targetless Calibration
    • Vehicle Lidar Targetless Calibration
    • Data Collection for Non Overlapping Camera Calibration
    • Non-Overlapping-Camera Calibration
    • Multi Sensor Visualization
    • Data Collection for LiDAR-LiDAR Calibration
    • LiDAR-LiDAR Calibration
    • Data Collection for IMU Intrinsic calibration
    • IMU Intrinsic Calibration
    • Data Collection for Radar-Camera Calibration
    • Radar-Camera Calibration
    • Data Collection for IMU Vehicle calibration
    • Lidar-IMU Calibration
    • IMU Vehicle Calibration
    • Data Collection for vehicle radar calibration
    • Vehicle radar calibration
    • Calibration Optimiser
    • Calibration list page
    • Data collection for rough terrain vehicle-Lidar calibration
    • Rough terrain vehicle Lidar calibration
    • Surround view camera correction calibration
    • Data Collection for Surround view camera correction calibration
    • Data Collection for Lidar-Radar calibration
    • Lidar Radar Calibration
    • Vehicle Lidar Calibration
    • API Documentation
      • Targetless Overlapping Camera Calibration API
      • Target Overlapping Camera Calibration API
      • Lidar Camera Calibration API
      • LiDAR-LiDAR Calibration API
      • Vehicle Lidar Calibration API
      • Global Optimiser
      • Radar Camera Calibration API
      • Target Camera-Vehicle Calibration API
      • Targetless Camera-Vehicle Calibration API
      • Calibration groups
      • Delete Calibrations
      • Access token for APIs
    • Target Generator
  • API Reference
    • Introduction and Quickstart
    • Datasets
      • Create new dataset
      • Delete dataset
    • Issues
    • Tasks
    • Process uploaded data
    • Import 2D labels for a dataset
    • Import 3D labels for a dataset
    • Download labels
    • Labeling profiles
    • Paint labels
    • User groups
    • User / User Group Scopes
    • Download datasets
    • Label sets
    • Resources
    • 2D box pre-labeling model API
    • 3D box pre-labeling model API
    • Output JSON format
Powered by GitBook
On this page
Export as PDF
  1. API Reference
  2. Datasets

Create new dataset

PreviousDatasetsNextDelete dataset

Last updated 2 years ago

Create a new dataset in a client.

** From 1st January 2020, one needs to call after this API call to complete preprocessing.

URL

POST

Request

Path parameters

Parameter name

Parameter type

Description

clientId

string

Client Id obtained from Deepen AI

Request body

Property name

Property type

Description

files

array

Array of metadata objects, each representing a file to be uploaded. Please see the example object below for the structure of the metadata object. For datasets of dataset_type ‘images’’, the metadata should be of a zip file of all images to be uploaded as part of the dataset. For datasets of dataset_type ‘video’, the metadata should be of an mp4 of the video to be uploaded as part of the dataset.

dataset_format

string

The format in which the dataset is uploaded for ‘3d’ dataset types. Can take one of the following values :

  1. json

  2. default

Not required for dataset_type other than ‘3d’

dataset_type

string

The type of uploaded dataset:

  • 3d

  • video

  • images

dataset_name

string

Name of the uploaded dataset

labelling_mode

string

Labelling format in the dataset:

  • label_by_label (For sequence datasets)

  • frame_by_frame (For single frame datasets - default)

labelling_profile_id

string

Labelling profile id

This is the profile id of the profile from which to get the labelling instructions.

labelling_profile

object

LabellingProfileResource indicating the labelling instructions. Either labelling_profile or labelling_profile_id is necessary to include labelling instructions with the dataset.

tags

array

Array of TagResource

user_scopes

array

Array of DatasetUserScopeResource

user_group_scopes

array

Array of DatasetUserGroupScopeResource

Example body

{ 'dataset_name': 'testDataset',

'dataset_type': '3d',

'fps': 10,

'labelling_profile': {'pipeline_spec': [{'stage_id': 'Labelling', 'can_edit': True, 'skills': {'box': {}, 'point': {}, 'polygon': {}, 'lane': {}, '3d_bbox': {}, '3d_point': {}, '3d_instance_point': {}, '3d_polygon': {}, '3d_polyline': {}}}, {'stage_id': 'QA', 'can_edit': False, 'skills': {'box': {}, 'point': {}, 'polygon': {}, 'lane': {}, '3d_bbox': {}, '3d_point': {}, '3d_instance_point': {}, '3d_polygon': {}, '3d_polyline': {}}}], 'features': {'box': {'attributes': {}, 'label_category_ids': []}, 'lane': {'attributes': {}, 'label_category_ids': []}, 'polygon': {'attributes': {}, 'label_category_ids': []}, 'point': {'attributes': {}, 'label_category_ids': []}, '3d_bbox': {'attributes': {}, 'label_category_ids': []}, '3d_polyline': {'attributes': {}, 'label_category_ids': []}, '3d_polygon': {'attributes': {}, 'label_category_ids': []}, '3d_point': {'attributes': {}, 'label_category_ids': []}, '3d_instance_point': {'attributes': {}, 'label_category_ids': []}}, 'instructions': {'text': ''}, 'notification_url': ''},

'labelling_mode': 'frame_by_frame',

'dataset_format': 'default',

'sensor_maker': None,

'files': [{'file_size': 16513471, 'file_type': 'application/zip'}] }

Response

Returns an array of resumable upload urls on successful completion

Response body

Property name

Property type

Description

files

array

dataset_id

string

The new dataset id created for the uploaded dataset

Example

{

'dataset_id': 'BBZztvi0Z9TC',

'files': [{'resumable_upload_url': 'https://www.googleapis.com/upload/storage/v2/b/deepenai-dev-rannotateclientdata/o?uploadType=resumable&name=rannotate_client_uploaded_data/8cz4s0r1/defaultproject/BBZztvi0Z9TC/3d_data.zip&upload_id=AAANsUnQh_s03FsS-iGuvfD9n3ABpmvLxV8-Yi86g-QwGrtntj3HfYE8e_l1iDbeKAp06MXNGqvbotpgti1n3yjQEF0', 'signed_form_data': None, 'file_size': 16513471, 'file_type': 'application/zip'}] }

Please use the below command or follow this link to upload the data

curl -v -X PUT -H 'Expect:' --upload-file '<path to zip file>' '<resumable upload url>'

Array of metadata objects, each representing a file to be uploaded. Please see the example object below for the structure of the metadata object. Each metadata object has a Google cloud storage resumable upload url, to which the file has to be uploaded. Please see google cloud storage documentation at to learn how to upload the file using the url.

Once the dataset zip file is uploaded, you need to call the to process the zip file and make it ready for labelling.

Process Upload API
https://tools.deepen.ai/api/v2/clients/{clientId}/datasets
process uploaded data api
https://cloud.google.com/storage/docs/json_api/v2/how-tos/resumable-upload